Objectives:

1. Describe and localize the lobes of the cerebral cortex and their major components.
2. Compare and contrast the functional components of the right and left hemispheres and localize the functional areas.
3. Analyze the deficit that would result from cortical lesions to the different functional areas and differentiate between right and left hemisphere lesions.
4. Explain the classical cortical representation of language and its clinical significance.
5. Describe the location of the major subcortical fiber bundles.
6. Describe the tracts running through the internal capsule, their location within the internal capsule, and the blood supply to the internal capsule.
7. Describe the function of the thalamus as the gatekeeper to the cortex. Describe which systems relay through the thalamus.
8. Integrate the components of the visual pathway from the retina to the cortex with the clinical symptoms of visual deficits.
9. Review the visual system and localize the relevant tracts and structures.
10. Describe the blood supply to the forebrain.

Resources

Here are the e-tutorials, videos and web resources for this lab-
Web Syllabus \& Links click the green buttons to access them.

Videos:

Subcortical Fiber Tracts (Video)

Visual Pathway (Video)

Modules:

3D Models:

Half Brain (3D)
Whole Brain 1 (3D)

Whole Brain 2 (3D)

Subcortical Fibers (3D)
Commissural Fibers (3D)

Sup. Long. Fasciculus (3D)

Visual Tracts (3D)
Optic Radiations (3D)
Cerebral Arterial Circle (3D)

This icon located throughout the lab manual indicates checklist items!

[^0]
The Cortex (CN II)

Identify the following functional areas on the brain specimens and describe their location. What are the landmarks? Which hemisphere are they in?

Colour and label this diagram to show the following functional areas:

Primary motor cortex
Supplementary motor areas
Primary sensory cortex
Supplementary sensory areas
Classical language areas of the cortex:

Wernicke

Cerebral Lobes \& Components

Identify the following structures of the brain:

Major Sulci \& Gyri

Longitudinal fissure

- separates the 2 cerebral hemispheresCentral sulcus
- separates frontal and parietal lobesLateral fissure
- separates frontal and parietal lobes from temporal lobeParieto-occipital sulcus
- on medial surface, separates occipital lobe from parietal / temporal lobesCalcarine fissure
- on medial surface in occipital lobePrecentral gyrus
- anterior to central sulcus
- primary motor areaPostcentral gyrus
- posterior to central sulcus
- primary somatosensory area

LobesFrontal
Parietal
Occipital
Temporal
Limbic

Hide Labels

Medial Cortex

Whole Brain

Primary areas: motor, sensory, visual, olfactory, auditoryAssociation areas: motor, sensory, visual, olfactory, auditoryLanguage areas: Broca, Wernicke
Heteromodal association areas: frontal, parietal, temporal

Half Brain

Corpus callosum: genu, body \& spleniumAnterior commissurePosterior commissure

Commissural Fibers in Medial Brain

January 22, 2024 - Dr. Krebs (claudia.krebs@ubc.ca)

Motor and Sensory Areas
on Lateral Brain

Hide Labels

Insula and Auditory Areas

Hide Labels

Language (Module)

What are the clinical symptoms of Broca's aphasia?
\square

What are the clinical symptoms of Wernicke's aphasia?
\square

What are the clinical symptoms of conduction aphasia?
\square

Case \#1

Ms. Hammadi, a 42 year old right-handed woman (she/her) presents with right upper and lower extremity weakness. She has word finding difficulties, normal comprehension, impaired repetition and non-fluent speech.

List the symptoms and the possible structures involved.
\square
What is the most likely site of the lesion? Why?

Which vascular territory is involved?
\square

January 22, 2024 - Dr. Krebs (claudia.krebs@ubc.ca)

Fiber Tracts

Superior longitudinal fasciculusArcuate fibersUncinate fasciculusInferior occipitofrontal fasciculusCingulumCorona radiata and internal capsule
Association fibers

are confined to the same hemisphere. Short
association fibers connect cortical areas
in adjacent gyri; long association fibers
pass between cortical areas that are further removed from each other.

Association Fibers in Coronal Section

Hide Labels

January 22, 2024 - Dr. Krebs (claudia.krebs@ubc.ca)

Draw in the following structures on the diagrams and identify on brain specimens:

Horizontal Section:

Corpus callosum: forceps major, forceps minor
Anterior and posterior commissures

\bigcirc
Internal capsule: anterior limb, posterior limb, genu

Coronal Section:

Corpus callosumAnterior commissureInternal capsule: anterior limb, posterior limbCheck out the interactive atlas with cross-sections:
Horizontal Sections (Web)

Coronal Sections (Web)

January 22, 2024 - Dr. Krebs (claudia.krebs@ubc.ca)

Thalamus

The thalamus is often considered to be the functional "gatekeeper" to the cerebral cortex. It consists of 2 egg-shaped masses of gray matter bordering the third ventricle, and is divided into many nuclei with motor, sensory and association functions.

Schematic Representation of the THALAMUS (viewed from superior - horizontal)

[^1]Williams \& Wilkins. All rights reserved.

Clinical Note

A small lesion in the thalamus can mimic a larger cortical or subcortical (fiber tract) lesion.

Identify the following:

Relationship of the thalamus to:Ventricles
\bigcirc
Internal capsuleLateral Geniculate Nucleus (LGN) - with superior brachium connecting to superior colliculusMedial Geniculate Nucleus (MGN) - with inferior brachium connecting to inferior colliculus

Medial Brain

Hide Labels

January 22, 2024 - Dr. Krebs (claudia.krebs@ubc.ca)

Visual System

January 22, 2024 - Dr. Krebs (claudia.krebs@ubc.ca)

Draw in the projection from the visual field to the retina, and from there to the cortex:

Retina in Each Eye

Identify on 3D specimens:optic nerveoptic chiasmoptic tract
lateral geniculate body
optic radiations
Whole Brain 1 (3D)

Whole Brain 2 (3D)

Optic Radiations (3D)
primary visual cortex

Which visual field deficit would be seen with the lesions indicated below?

D
A

Case \#2

Noah, a 31 year old right-handed man (he/him) presents with sudden severe neck pain on the right. He reports difficulty seeing on his left side.

Pertinent finding in the neurological exam: left homonymous hemianopsia.

Where in the visual pathway could the lesion be?
\square

January 22, 2024 - Dr. Krebs (claudia.krebs@ubc.ca)

Blood Supply

Whole Brain

Cerebral arterial circle and all major branches:
Coronal and Horizontal Sections

Middle cerebral artery (MCA)
Anterior cerebral artery (ACA)Posterior cerebral artery (PCA)
\bigcirc
Anterior choroidal arterySuperior cerebellar arteryAnterior inferior cerebellar artery
Posterior inferior cerebellar arteryBasilar artery
Vertebral artery
Perfusion areas of the major vessels supplying the cortex (ACA, MCA, PCA)

January 22, 2024 - Dr. Krebs (claudia.krebs@ubc.ca)

Cerebral Arterial Circle in Cranial Cavity

Hide Labels

January 22, 2024 - Dr. Krebs (claudia.krebs@ubc.ca)

Using the stroke model on the neuroanatomy website, sketch in the perfusion areas of the anterior cerebral, middle cerebral (including deep branches), posterior cerebral and anterior choroidal arteries.

Interactive atlas with cross-sections:
Horizontal Sections (Web)

Coronal Sections (Web)

Which cortical area would the following descriptions of lesions be most likely associated with?

1. Deficits in the ability to recognize objects in the opposite visual field (visual agnosia).
\square
2. Deficits in the ability to combine touch, pressure and proprioceptive information to interpret the significance of sensory information (tactile agnosia) and the inability to recognise an object placed in the hand (tactile agnosia).
\square
3. Personality changes, deficits in executive function.
\square
4. Decreased perception of sound, primarily in the contralateral ear.
\square
5. Deficits in learned, skilled motor activities (apraxia).
\square
6. Expressive or production aphasia - sparse, halting language, difficulty with syntax and grammar, word/ phrase repetition and mangled word structure.

RESOURCES

Websites:

Neuroanatomy | Entrada

Recommended Textbooks:

Lippincott Illustrated Reviews: Neuroscience

By: Claudia Krebs, Joanne Weinberg, Elizabeth J. Akesson, Esma Dilli
Lippincott Williams \& Wilkins
ISBN 978-1-4963-6789-1
Neuroanatomy Through Clinical Cases
By: Hal Blumenfeld
Sinauer
ISBN 978-0-8789-3613-7
Neuroanatomy in Clinical Context: An Atlas of Structures, Sections, Systems, and Syndromes By: Duane E. Haines
Wolters kluwer Health
ISBN 978-1-4511-8625-3

ACKNOWLEDGEMENTS

Artwork \& Design:

The HIVE, UBC Faculty of Medicine
Instructional Design: Monika Fejtek
Medical Illustration Lead: Paige Blumer
Academic Lead: Claudia Krebs

Prosector: Lien Vo
Content Review: Esma Dilli

[^0]: ** NOTE: Interactive PDFs are best viewed on desktop/laptop computers - functionality is not reliable on mobile devices **

[^1]: Modified from Neuroanatomy Primer Color to Learn by M.E. McNeill. For educational use only. Copyright © 1997 by

